Abstract

In this paper, formulation of the surface integral equations for solving electromagnetic scattering by dielectric and composite metallic and dielectric objects with iterative methods is studied. Four types of formulations are considered: T formulations, N formulations, the combined field integral equation formulation, and the Müller formulation. By studying properties of the integral equations and their testing in the Galerkin method, “optimal” forms for each formulation type are derived. Numerical examples demonstrate that the developed new formulations lead to clear improvements in the convergence rates when the matrix equations are solved iteratively with the generalized minimal residual method. Both the Rao‐Wilton‐Glisson and Trintinalia‐Ling (TL) basis functions are used in expanding the unknown electric and magnetic surface current densities. In particular, the first‐order TL basis functions are required in the N formulations to maintain the solution accuracy when the surfaces include sharp edges.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.