Abstract
A novel yet versatile approach is described for surface-initiated living radical polymerization (SI-LRP) from silica particles (SiPs). Monodisperse SiPs were surface-modified with a newly designed surface-fixable initiator (BPEGE) having three components: a triethoxysilane moiety, a poly(ethylene glycol) (PEG) unit, and an initiation site for atom transfer radical polymerization (ATRP) in the form of a 2-bromoisobutyryl group. The surface-initiated ATRP of methyl methacrylate (MMA) mediated by a copper complex was carried out with the BPEGE-fixed SiPs. The polymerization proceeded in a living manner, producing SiPs coated with well-defined poly(MMA) of a target molecular weight with a graft density as high as 0.5 chains/nm2. Thanks to the amphiphilic property of PEG, the system was successfully applied for SI-ATRP of PEG methacrylate and sodium p-styrenesulfonate in aqueous media in which the BPEGE-fixed SiPs were highly dispersed without causing any aggregations. The formation of colloidal crystals with the polymer brush-afforded SiPs demonstrated the high uniformity and perfect dispersibility of the hybrid particles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.