Abstract

Here, we perform a Surface-Enhanced Fluorescence (SEF) intensity and lifetime imaging study on linear arrays of silver half-shells (LASHSs), a class of polarization-sensitive hybrid colloidal photonic-plasmonic crystal unexplored previously in SEF. By combining fluorescence lifetime imaging microscopy, scanning confocal fluorescence imaging, Rayleigh scattering imaging, optical microscopy, and finite difference time domain simulations, we identify with high accuracy the spatial locations where SEF effects (intensity increase and lifetime decrease) take place. These locations are the junctions/crevices between adjacent half-shells in the LASHS and locations of high electromagnetic field enhancement and strong emitter-plasmon interactions, as confirmed also by simulated field maps. Such detailed knowledge of the distributed SEF enhancements and lifetime modification distribution, with respect to topography, should prove useful for improved future evaluations of SEF enhancement factors and a more rational design of efficiency-optimized SEF substrates. These linear arrays of metal-coated microspheres expand the family of hybrid colloidal photonic-plasmonic crystals, platforms with potential for applications in optoelectronic devices, fluorescence-based (bio)chemical sensing, or medical assays. In particular, due to the polarized optical response of these LASHSs, specific applications such as hidden tags for anti-counterfeiting or plasmon-enhanced photodetection can be foreseen.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.