Abstract

Surface engineering of nanoparticles has recently emerged as a promising technique for synthetic molecular recognition of biological analytes. In particular, the use of synthetic heteropolymers adsorbed onto the surface of a nanoparticle can yield selective detection of a molecular target. Synthetic molecular recognition has unique advantages in leveraging the photostability, versatility, and exceptional chemical stability of nanomaterials. In particular, single-walled carbon nanotubes (SWNT) exhibit a large Stokes shift and near infrared emission for maximum biological sample transparency. Optical biosensors with high signal transduction and molecular specificity can be synthesized with amphiphilic heteropolymers grafted to SWNT, and discovered by high-throughput screening. Herein, we describe the development and the characterization of surface-engineered nanoparticles, or "synthetic antibodies," for protein detection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.