Abstract

Herein, we report the fine tuning of electrocatalytic characteristics of CeO2–TiO2 composite by surface engineering to reduce overpotential and to improve exchange current density for enhanced alkaline hydrogen evolution reaction (HER). The enhanced electrocatalytic activity of the surface engineered CeO2–TiO2 composite through Ni and P decoration is attributed to the improved electron transport ability. The surface roughness characteristics and surface composition of electroactive species are tuned to generate high electronic conductivity on the surface engineered composite electrode surface. The developed hard electrode with leptokurtic surface (Sku > 3) exhibited a high average roughness value (Sa) of 3 μm due to incorporation of the mesoporous catalyst material into it. Tuning of a compact and continuous electrode surface with critical composition of elements Ni (52 at.%), P (20 at.%), Ce (9 at.%) and Ti (8 at.%) furnishes the high conductivity (contact potential difference = 0.83 V) to the electrode. The developed electrode with surface engineered CeO2–TiO2 catalyst exhibited a low overpotential of −111 mV (at a high current density of 250 mA cm−2) and high exchange current density (1.6 × 10−1 mA cm−2) with low charge transfer resistance (615 Ω cm2). High electrocatalytic activity and stability of the surface engineered CeO2–TiO2 catalyst electrode during alkaline (32 w/v.% NaOH) HER ensure its promising performance and applicability for long term HER.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.