Abstract
Cancer is highly heterogeneous in nature and characterized by abnormal, uncontrolled cells' growth. It is responsible for the second leading cause of death in the world. Nanotechnology is explored profoundly for sitespecific delivery of cancer chemotherapeutics as well as overcome multidrug-resistance (MDR) challenges in cancer. The progress in the design of various smart biocompatible materials (such as polymers, lipids and inorganic materials) has now revolutionized the area of cancer research for the rational design of nanomedicine by surface engineering with targeting ligands. The small tunable size and surface properties of nanomedicines provide the opportunity of multiple payloads and multivalent-ligand targeting to achieve drug efficacy even in MDR cancer. Furthermore, efforts are being carried out for the development of novel nano-pharmaceutical design, focusing on the delivery of therapeutic and diagnostic agents simultaneously which is called theranostics to assess the progress of therapy in cancer. This review aimed to discuss the physicochemical manipulation of cancer nanomedicine for rational design and recent progress in the area of surface engineering of nanomedicines to improve the efficacy of cancer chemotherapeutics in MDR cancer as well. Moreover, the problem of toxicity of the advanced functional materials that are used in nanomedicines and are exploited to achieve drug targeting in cancer is also addressed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.