Abstract

About 90 % of the global rice production takes place in Asia, while European production is quantitatively modest. Italy is the Europe’s leading producer, with over half of total production concentrated in a large, traditional paddy rice area in the north of the country. High irrigation requirement for continuous flooding encourages the adoption of water saving techniques. In 2013, an intense monitoring activity was conducted on two fields characterized by continuous flooding and intermittent irrigation regimes, with the aim of comparing their agronomical and hydrological effects, including their influence on the energy balance. An eddy covariance station was installed on the levee between the two fields, to monitor latent (LE) and sensible (H) heat fluxes as a function of wind direction. Additionally, the fields were instrumented with net radiometers, soil heat flux (G) plates, thermistors, tensiometers, and multilevel moisture probes. Three footprint models were applied to determine position and size of the footprint area at each monitoring time step, providing similar results. Two half-hourly turbulent fluxes datasets were obtained, one for each irrigation regime, each one comprising about 10 % of the daytime time steps over the agricultural season. The reliability of the monitoring performed with a single EC station was confirmed by the energy balance closure (H + LE versus Rn-G), showing an imbalance lower than 10 % for both the regimes. A detailed analysis of the effect of the storage terms on the ground heat flux estimation and a more thorough analysis of the radiation balance for the two plots were also performed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.