Abstract

The article reviews recent progress in the theoretical understanding of near-field surface electromagnetic phenomena in pristine and atomically doped carbon nanotubes. The phenomena involving strong coupling effects are outlined. They are the optical absorption by single-walled carbon nanotubes doped with single atoms or ions in the frequency range close to the atomic transition frequency, the entanglement of the pair of atomic qubits strongly coupled to a common high-finesse surface photonic mode of the nanotube, and the optical response of the strongly coupled surface exciton-plasmon excitations in pristine semiconducting carbon nanotubes. The phenomena reviewed have a great potential to be exploited for the future development of the nanotube based tunable optoelectronic device applications in areas such as nanophotonics, nanoplasmonics, cavity quantum electrodynamics, and quantum information science.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.