Abstract

A system for displaying heterologous respiratory syncytial virus (RSV) glycoproteins on the surface of Lactococcus lactis NZ9000 was developed. Fusion of the USP45 signal peptide and the cA (C terminus of the peptidoglycan-binding) domains of AcmA, a major autolysin from L. lactis, to the N- and C-terminal of the target proteins, respectively, was carried out. The target protein was the major immunogenic domain of either the F (40.17-kDa) or G (11.49-kDa) glycoprotein domains of the RSV. Whole-cell ELISA readings obtained after 24 h of induction showed an increase in protein expression as the cA domain repeats increased, for the G glycoprotein of RSV. On the other hand, the F glycoprotein indicated decreasing expression levels as the number of cA domain repeats increased. The difference in the expression levels of the F and G domains may be attributed to the different sizes of the antigenic domains. The size and properties of the target proteins are vital in determining the amount of antigenic domains being displayed on the surface of live cells. The system demonstrated here can aid in the utilization of the generally regarded as safe (GRAS) bacteria L. lactis, as a vaccine delivery vehicle to surface display the antigenic proteins of RSV.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.