Abstract

Assembly strategies for functional nanowire devices that merge bottom-up and top-down technologies have been debated for over a decade. Although several breakthroughs have been reported, nanowire device fabrication techniques remain generally incompatible with large-scale and high-yield top-down microelectronics manufacturing. Strategies enabling the controlled transfer of nanowires from the growth substrate to pre-defined locations on a target surface would help to address this challenge. Based on the promising concept of mechanical nanowire transfer, we developed the technique of surface-controlled contact printing, which is based purely on dry friction between a nanowire and a target surface. Surface features, so-called catchers, alter the local frictional force or deposition probability and allow the positioning of single nanowires. Surface-controlled contact printing extends the current scope of nanowire alignment strategies with the intention to facilitate efficient nanowire device fabrication. This is demonstrated by the simultaneous assembly of 36 nanowire resistors within a chip area of greater than 2 cm2 aided only by mask-assisted photolithography.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.