Abstract

Summary Physiochemical properties of nanomedicines determine their in vivo fate and ultimate therapeutic efficacy. Establishing correlations between nanoparticle properties and their physiological response is vitally important for nanomedicine design and optimization. To date, the correlation between surface charge, a fundamental property of a nanomedicine, and its therapeutic efficacy remains poorly understood. Here, we systematically investigated the influence of surface charge on the pharmacokinetics, tumor accumulation, penetration, and antitumor efficacy of nanoparticles constructed from PEG- b -PLA, loaded with docetaxel, and tuned by various lipids to yield three groups of ∼100 nm nanoparticles with positive, neutral or negative charge. Our results indicate that cationic PEGylated nanoparticles, although slightly inferior in blood circulation time and tumor accumulation, outperform their anionic or neutral counterparts in inhibiting tumor growth in five different tumor models. Docetaxel-loaded cationic nanoparticles significantly suppressed tumor growth with an inhibition ratio of ∼90%, compared with the ∼60% achieved by their anionic or neutral counterparts. Further studies reveal that better tumor penetration and 2.5-fold higher cellular uptake of cationic PEGylated nanoparticles is responsible for their superior treatment efficacy. This fundamental study provides a foundation for engineering the next generation of nano-delivery systems for in vivo applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.