Abstract
AbstractLow‐density polyethylene (LDPE) was treated with a low‐temperature cascade arc plasma torch (LTCAT) of argon with or without adding a reactive gas of oxygen or water vapor. The static sessile droplet method and the dynamic Wilhelmy balance method were employed to perform surface contact angle measurement in order to investigate and characterize the effects of LTCAT treatment on LDPE surfaces. These treatment effects included changes in surface wettability and surface stability and possible surface damage that would create low‐molecular‐weight oligomers on the treated surface. Experimental results indicated that the combination of static and dynamic surface contact angle measurements enabled a comprehensive investigation of these effects of plasma treatment on a polymer surface. Without the addition of a reactive gas, a 2‐s argon LTCAT treatment of LDPE resulted in a stable hydrophilic surface (with a water contact angle of 40°) and little surface damage. The addition of oxygen into argon LTCAT produced a less stable LDPE surface and showed more surface damage. Adding H2O vapor into argon LTCAT produced an extremely hydrophilic surface (with a water contact angle < 20°) of LDPE but with pronounced surface damage. When compared with conventional radio frequency (13.56 MHz) plasmas, LTCAT treatment provides a much more rapid, effective, and efficient method of surface modification of LDPE. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 2528–2541, 2006
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.