Abstract

Interfacial films of whole myelin membrane adsorb at the air–water interface from myelin vesicles. The films show a liquid state and their equilibrium spreading pressure is equal to the collapse pressure (about 47 mN/m). The films appear microheterogeneous as seen by epifluorescence microscopy, consisting in two liquid phases over all the adsorption isotherm, starting with rounded liquid expanded domains (low surface pressure) immersed in a cholesterol enriched phase and reaching a fractal pattern at high surface pressure similar to those previously observed by compressing the film. Vesicles adsorb to the interfacial film mainly at the lateral interfaces. The high surface pressure at equilibrium (almost equal to the collapse pressure) indicates the formation of surface multilayers, also shown by fluorescence microscopy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.