Abstract

To decrease the negative impact of surfactants, the idea of using purified water in washing has been proposed. Previous studies showed that purified water facilitates the roll-up mechanism by promoting electrostatic interactions between the surface and the soil. However, washing mechanisms can be dependent on the amount of remaining soil.In this work we studied the removal of thin Vaseline films and thicker oil films from hydrophilic surfaces using multiple washing cycles at different temperatures. The Quartz Crystal Microbalance with Dissipation monitoring (QCM-D) and gravimetric analysis were used for thin and thick films respectively. In QCM-D experiments most of the thin film was removed during the first two cycles, while following cycles did not substantially affect washing efficiency; increased temperature facilitated the washing process. Gravimetric analysis showed that the washing of thicker films can be divided into two regimes. During the first, exponential, regime the amount of oil on the surface is high and surface mechanisms, such as roll-up, dominate. Oil droplets are kinetically stabilized in purified water by electrostatic interactions. As the amount of oil on the surface decreases, the second, linear, regime is introduced. The removal of oil occurs by equilibrium bulk mechanisms, where electrostatic interactions are less important.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.