Abstract

Abstract Paper made of groundwood was surface treated by atmospheric plasma of the diffuse coplanar surface barrier discharge (DCSBD) type in air and in nitrogen. Changes in surface composition and chemical bonding of the constituent elements were studied by X-ray photoelectron spectroscopy (XPS), and alterations in wetting were examined by contact angle measurements. Air plasma treatment resulted in strong oxidation but no N incorporation, while the ratio of the area of the O1 component (binding energy 532.1 eV) to that of the O2 component (533.2 eV) decreased, reflecting an increase in the proportion of O in C–O type bonds. Nitrogen plasma treatment followed by exposure to the atmosphere resulted in a slight N incorporation (1.5 at.%) and oxidation even more intense than observed for air plasma treatment. The O1/O2 ratio slightly increased, implying more O in C=O type bonds. The time dependence of surface oxidation showed a local maximum at treatment time of approximately 2 s for both the air and nitrogen plasmas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.