Abstract

DynorphinA (Dyn) administered intrathecally or released spinally in mice produces antianalgesia, that is, antagonizes morphine analgesia (tail-flick test). Spinal transection eliminates this Dyn antianalgesia. Present results in mice show that intracerebroventricular administration of flumazenil, a benzodiazepine receptor antagonist, also eliminated the antianalgesic action of Dyn; flumazenil in the brain eliminated the suppressant effect of intrathecal Dyn on intrathecal and intracerebroventricular morphine-induced antinociception. Intracerebroventricular clonidine, naloxone, and norbinaltorphimine release spinal Dyn. The latent antinociceptive actions of these compounds were uncovered by intracerebroventricular flumazenil. Thus, Dyn, given intrathecally or released spinally, activates a pathway that is inhibited by intracerebroventricular flumazenil. Dyn antianalgesia is not significantly altered by intracerebroventricular administration of bicuculline and picrotoxin, suggesting that activation of the gamma-aminobutyric acid receptor has little if any involvement in the antianalgesic action of Dyn. The antagonistic effect of Dyn seems to be mimicked by benzodiazepine agonists. Furthermore, administration of a benzodiazepine receptor inverse agonist (methyl-6,7-dimethoxy-4-ethyl-β-carboline-3-carboxylate) inhibited Dyn antianalgesia as did flumazenil. Thus, flumazenil, through a benzodiazepine antagonist or inverse agonist action, interrupts, as does spinal transection, the neuronal circuit (cord/brain/cord) necessary for the antianalgesic action of spinal Dyn. Because Dyn antianalgesia is an indirect action, activation of the neuronal circuit must lead to the release of a direct-acting antianalgesic mediator in the spinal cord.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.