Abstract

In the present work, pharmacological and pharmacokinetic properties of the supramolecular complex of non-steroid anti-inflammatory drug ibuprofen (IBU) with natural polysaccharide arabinogalactan (AG) were studied. The main goals of such complexation were the increase of ibuprofen's bioavailability and decrease its effective dose after oral administration. The complex with mass ratio as IBU:AG 1:10 was obtained by mechanochemical synthesis and characterized by water solubility, electron microscopy, differential scanning calorimetry, X-ray powder diffraction analysis and 1H-nuclear magnetic resonance spectroscopy. Different animal models of pain and inflammation was used to investigate IBU:AG biological effects. Plasma concentration of IBU and its pharmacokinetic parameters were evaluated after oral introduction. It was found that ibuprofen's effective analgesic and anti-inflammatory dose decreased twofold after its introduction as a complex with AG. The reason of this difference is due to the increase of ibuprofen concentration in rats' plasma: C max of IBU at doses of 20 and 40mg/kg was found as 0.088 and 0.132μg/ml, whereas C max of IBU in the complex form was 0.103 and 0.160μg/ml, respectively. Thus, we have shown that complexation of the IBU with AG results in its bioavailability increase, reduction of the effective dose and should decrease toxic side effects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.