Abstract

Molecular wires have been attracting much interest due to their indispensable roles in molecular-scale electronic devises, and conventional researches are largely focused on π -conjugated polymeric systems. They suffer from limitations on the type of elements that can be incorporated into the chains. In contrast to the π -conjugated wires, one-dimensional inorganic complexes are composed of a rich variety of metal ions. A family of halogen-bridged one-dimensional MII/MIV mixed valence complexes [M(en)2][M’X2(en)2]Y4 (M, M’ = Pt, Pd, Ni, X = Cl, Br, I, en: 1,2,-diaminoethane, Y: counterions such as ClO4) has been attracting much interest due to their unique physicochemical properties such as intense intervalence charge transfer (CT) absorption, semiconductivity, and large third-order nonlinear optical susceptibilities.2 They are not soluble in organic media and when dispersed in water, the one-dimensional structure is disrupted and dissociate into constituent molecular complexes. We have recently developed a new strategy to solubilize such one-dimensional structures in organic media, by the formation of polyioncomplexes consisting of anionic lipids and the mixed valent complexes.3-5 In this study, we have newly synthesized naphthalene containing sulfonate amphiphiles and solution characteristics of the supramolecular complexes are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.