Abstract
Climate change has been linked to widespread retreats and recent disappearances of small glaciers in mountainous regions such as the Patagonia, Andes, Alps and Himalaya (Dyurgerov and Meier, 2000; Fujita et al., 2006; Kargel et al., 2005; Oerlemans, 2005; Paul, Kaab et al., 2004; Racoviteanu et al., 2008; Thakur, 2010). Alpine glaciers are particularly sensitive to changes in climate due to their proximity to melting conditions, wide altitude range, and variability in debris cover (Haeberli et al., 2007; Racoviteanu et al., 2008). Alpine glacial retreat in response to climate change and recent warming trends may have severe hydroecological consequences to surrounding communities (Kehrwald et al., 2008; Milner et al., 2009). The recession of glaciers has been further linked to increases in glacier-related hazards in high mountainous areas such as avalanches, glacial lake outburst floods and debris flows which can increasingly threaten human lives, settlements, and infrastructure (Huggel et al., 2002; Quincey et al., 2005). This has necessitated the assessment and monitoring of potentially hazardous glacial lakes through the use of remote sensing, especially in high mountainous areas due to inaccessibility and lack of field surveys (Quincey et al., 2005).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.