Abstract

Auditory steady-state responses (ASSRs) are recurrent neural activities entrained to regular cyclic auditory stimulation. ASSRs are altered in individuals with schizophrenia, and may be related to hypofunction of the N-methyl-D-aspartate (NMDA) glutamate receptor. Noncompetitive NMDA receptor antagonists, including ketamine, have been used in ASSR studies of rodent models of schizophrenia. Although animal studies using non-human primates are required to complement rodent studies, the effects of ketamine on ASSRs are unknown in intact awake non-human primates. In this study, after administration of vehicle or ketamine, click trains at 20–83.3 Hz were presented to elicit ASSRs during recording of electroencephalograms in intact, awake macaque monkeys. The results indicated that ASSRs quantified by event-related spectral perturbation and inter-trial coherence were maximal at 83.3 Hz after vehicle administration, and that ketamine reduced ASSRs at 58.8 and 83.3 Hz, but not at 20 and 40 Hz. The present results demonstrated a reduction of ASSRs by the NMDA receptor antagonist at optimal frequencies with maximal responses in intact, awake macaques, comparable to ASSR reduction in patients with schizophrenia. These findings suggest that ASSR can be used as a neurophysiological biomarker of the disturbance of gamma-oscillatory neural circuits in this ketamine model of schizophrenia using intact, awake macaques. Thus, this model with ASSRs would be useful in the investigation of human brain pathophysiology as well as in preclinical translational research.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call