Abstract

Compact toroid plasmas formed in field-reversed theta pinches are generally destroyed after 30–50 μsec by a rotating n=2 instability. In the reported experiment, instability is controlled, and the plasma destruction is avoided in the TRX-1 theta pinch through the application of octopole magnetic fields. The decay times for loss of poloidal flux and particles are unaffected by the octopole fields. These decay times are about 100 μsec based on inferences from interferometry and excluded flux measurements. The weak, rotating elliptical disturbance (controlled n=2 mode) also made possible a novel determination of the density profile near the separatrix using single-chord interferometry. The local density gradient scale length in this region is found to be about one ion gyrodiameter.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.