Abstract
Calcitonin gene-related peptide (CGRP) exhibits prominent anti-inflammatory actions. We examined whether CGRP-transfected dendritic cells (DC) prevent the development of experimental autoimmune optic neuritis (EAON) and experimental autoimmune encephalomyelitis (EAE). A human CGRP-expressing plasmid was constructed, and used to transfect C57BL/6 mouse bone marrow-derived matured DC (mDC) by electroporation Transfection efficiency was 50% with 80% cell viability. C57BL/6 mice were immunized with myelo-oligodendrocyte glycoprotein 35-55, and injected intravenously with CGRP-expressing mDC (CGRP gene-transfected group) or mock-transfected mDC (mock-transfected group) at the induction or effector phase. EAE was diagnosed clinically and EAON was assessed histopathologically. Delayed hypersensitivity was measured. Supernatants of spleen cell cultures were assayed for cytokines using ELISA. The CD4(+)CD25(+)Foxp3(+) fraction in spleen cells was analyzed using flow cytometry. For gene therapy in the induction phase, EAE developed in 50% of mice in the CGRP-transfected group compared with 80% in the mock-transfected group, and the mean pathological score for EAON was 1 in the CGRP-transfected group compared with 2 in the mock-transfected group (P < 0.05). For gene therapy in the effector phase, the mean EAE clinical score (1.5 vs. 3.0) and mean EAON pathological score (1.0 vs. 2.0) were both lower in the CGRP-transfected group compared with the mock-transfected group (P < 0.05). Delayed hypersensitivity was suppressed significantly in the CGRP-transfected group. IL-10 production by spleen cells in the CGRP-transfected group increased independent of MOG concentration, compared with the mock-transfected group. Interestingly, the proportion of CD4(+)CD25(+)Foxp3(+) cells increased significantly (P < 0.05) in the CGRP-transfected group compared with the mock-transfected group. Gene therapy with CGRP-expressing mDC was effective in suppressing the development of EAON and EAE.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.