Abstract

An experimental study was conducted to investigate the ability of ribbon fairings to suppress fl ow-induced vibrations on a long fl exible horizontal cylinder. The test matrix included towing the cylinder at various speeds, towing the cylinder in regular waves, and investigating the infl uence of partial coverage on the response behavior. The test cylinder was 29 m long with a length to diameter (L/D) ratio of ~760. Interior to the tensioned cylinder model were six sets of unequally spaced biaxial accelerometers in a lightly pressurized environment keeping the interior dry. A string potentiometer was externally attached at the center of the model to provide a reference for later displacement estimates based on integration of the acceleration data. The time domain decomposition method (TDD) was used to recover mode shapes, damping characteristics, and modal contribution factors. For the uniform current cases, the fi ndings illustrate that ribbon fairings are effective and provide increased damping when compared with bare cylinders. Partial coverage demonstrates that localized suppression becomes increasingly less effective as the percentage coverage is reduced. The introduction of regular waves to the towed cylinder cases illustrates the ineffectiveness of ribbon fairing to suppress the orbital motions induced by the waves, which is preferable to the amplifi cation typically observed for airfoil fairings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.