Abstract

Recent efficiency advancements in kesterites have reinforced the use of Cu2ZnSn(S,Se)4 (CZTSSe) in indoor photovoltaic applications. However, the performance of kesterites under low light intensity conditions is mainly hindered by deep‐level defects. In this study, a strategic approach of silver (Ag) and germanium (Ge) cation substitution to cure these defects are employed. The Ag‐doped CZTSSe (CZTSSe:Ag) and Ge‐doped (CZTSSe:Ge) samples experimentally demonstrated a significant improvement in kesterite device performance under all intensities of LED and white fluorescent lamp conditions are prepared. Interestingly, the CZTSSe:Ag device exhibited the highest performance levels, i.e., 1.2–1.5 and 2.5–3 times better than those of Ge‐doped CZTSSe:Ge and undoped CZTSSe, respectively. This improved device performance is mainly attributed to the reduced energy level of deep‐level defects in CZTSSe:Ag. Moreover, these defects assisted in the generation of a larger potential difference between the grain boundary and grain interior in the CZTSSe:Ag sample, attracting minority carriers near the grain boundary. Consequently, the improved carrier separation process reduced the carrier recombination losses and enhanced the power output under low light intensity conditions. This Ag and Ge cation substitution in kesterite is found to be an effective approach to improve the device performance under low light intensity conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.