Abstract

Suspensions of superparamagnetic colloids that equilibrate in a toggled magnetic field undergo a Rayleigh-Plateau instability with a characteristic wavelength λ = 600 μm for the toggle frequency ν = 0.66 Hz. The instability is suppressed when the chamber length L in the field direction is less than 2λ. The final size of the magnetic domains perpendicular to the field, D, follows a power law relation of D ∼ L(0.71±0.07). These results demonstrate the structural differences of field-directed suspensions when confined to lengths scale set by the phase separation process and can potentially be used to create self-assembled colloidal crystals with well-defined size and shape.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.