Abstract

Bimetallic phosphides may potentially benefit from the synergetic effects of two metallic elements for enhanced performances. For example, a nickel cobalt phosphide (NiCoP), in which Ni promotes the electrochemical activity of the materials while Co can reduce the charge transfer resistance, may potentially achieve remarkable performance in an alkaline aqueous zinc battery (AZB). However, the main challenge of bimetallic phosphides lies in the unsatisfactory electrochemical stability caused by their easy oxidization. Here we found sulfur-doping to bimetallic nickel cobalt phosphide (S-NiCoP) can effectively get its surface passivation suppressed. As a result, the S-NiCoP electrode exhibits a remarkable area specific capacity (1.32 mAh cm−2) and an ultra-long lifespan (capacity retention of 160% after 8000 cycles) in an AZB. The reaction mechanism is further revealed to be a reversible redox reaction from NiCoP to NiPxOH and CoP1-xOH. Furthermore, a quasi-solid-state S-NiCoP//Zn battery is fabricated. It performs well under various conditions (bending, washing, cutting) and delivers high energy density (21.5 mW h cm−3) and power density (336.84 mW cm−3). This work provides a general approach to stabilize bimetallic phosphides and opens a door to utilize the synergetic effects of various bimetallic phosphides for aqueous batteries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.