Abstract

AbstractSolid electrolytes have been considered as a promising approach for Li dendrite prevention because of their high mechanical strength and high Li transference number. However, recent reports indicate that Li dendrites also form in Li2S‐P2S5 based sulfide electrolytes at current densities much lower than that in the conventional liquid electrolytes. The methods of suppressing dendrite formation in sulfide electrolytes have rarely been reported because the mechanism for the “unexpected” dendrite formation is unclear, limiting the successful utilization of high‐energy Li anode with these electrolytes. Herein, the authors demonstrate that the Li dendrite formation in Li2S‐P2S5 glass can be effectively suppressed by tuning the composition of the solid electrolyte interphase (SEI) at the Li/electrolyte interface through incorporating LiI into the electrolyte. This approach introduces high ionic conductivity but electronic insulation of LiI in the SEI, and more importantly, improves the mobility of Li atoms, promoting the Li depositon at the interface and thus suppresses dendrite growth. It is shown that the critical current density is improved significantly after incorporating LiI into Li2S‐P2S5 glass, reaching 3.90 mA cm−2 at 100 °C after adding 30 mol% LiI. Stable cycling of the Li‐Li cells for 200 h is also achieved at 1.50 mA cm−2 at 100 °C.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.