Abstract

Mesangial lesions and podocyte injury are essential manifestations of the progression of diabetic kidney disease (DKD). Although cross-communication between mesangial cells (MCs) and podocytes has recently been suggested by the results of single-nucleus RNA sequencing analyses, the molecular mechanisms and role in disease progression remain elusive. Our cDNA microarray data of diabetic mouse glomeruli suggested the involvement of endoplasmic reticulum (ER) stress in DKD pathophysiology. In vitro experiments revealed the suppression of the ER-associated degradation (ERAD) pathway and induction of apoptosis in podocytes that were stimulated with the supernatant of MCs cultured in high glucose conditions. In diabetic mice, ERAD inhibition resulted in exacerbated albuminuria, increased apoptosis in podocytes, and reduced nephrin expression associated with the downregulation of ERAD-related biomolecules. Flow cytometry analysis of podocytes isolated from MafB (a transcription factor known to be expressed in macrophages and podocytes)-GFP knock-in mice revealed that ERAD inhibition resulted in decreased nephrin phosphorylation. These findings suggest that an intraglomerular cross talk between MCs and podocytes can inhibit physiological ERAD processes and suppress the phosphorylation of nephrin in podocytes, which thereby lead to podocyte injury under diabetic conditions. Therapeutic intervention of the ERAD pathway through the cross talk between these cells is potentially a novel strategy for DKD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.