Abstract
Clustering or co-clustering techniques have been proved useful in many application domains. A weakness of these techniques remains the poor support for grouping characterization. As a result, interpreting clustering results and discovering knowledge from them can be quite hard. We consider potentially large Boolean data sets which record properties of objects and we assume the availability of a bi-partition which has to be characterized by means of a symbolic description. Our generic approach exploits collections of local patterns which satisfy some user-defined constraints in the data, and a measure of the accuracy of a given local pattern as a bi-cluster characterization pattern. We consider local patterns which are bi-sets, i.e., sets of objects associated to sets of properties. Two concrete examples are formal concepts (i.e., associated closed sets) and the so-called δ-bi-sets (i.e., an extension of formal concepts towards fault-tolerance). We introduce the idea of characterizing query which can be used by experts to support knowledge discovery from bi-partitions thanks to available local patterns. The added-value is illustrated on benchmark data and three real data sets: a medical data set and two gene expression data sets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.