Abstract

A continuing goal in catalysis research is to engineer the composition and structure of noble metal nanomaterials in order to precisely tune their catalytic activity. Herein, we present proof-of-concept results on the synthesis of supported bimetallic core/shell nanoparticles entirely by atomic layer deposition (ALD). ALD is a novel and scalable method, which can be used to prepare noble-metal catalysts on high surface area support materials. Two properties of ALD of noble metals, namely the Volmer–Weber growth and surface-selectivity, are exploited to decouple primary island growth from subsequent selective shell growth. This concept is applied to synthesize highly dispersed Pd/Pt and Pt/Pd nanoparticles. In-depth characterization of the nanoparticles provides evidence for the core/shell morphology and for the narrow size distribution. The self-limiting nature of the ALD process allows for independent control of the core and shell dimensions, opening up unique possibilities for precise engineering of metallic nanoparticle properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.