Abstract

Growing evidence has demonstrated that adipose-derived stem cell-derived extracellular vesicles enhance the survival of fat grafts and the browning of white adipose tissue. We evaluated whether supplementation with adipose-derived stem cell-derived extracellular vesicles promotes the survival and browning of fat grafts. Extracellular vesicles derived from adipose-derived stem cells were injected into fat grafts of C57BL/6 mice once per week until postgraft week 12. The grafts were collected and weighed after postgraft weeks 2, 4, and 12. The histological morphology, neovascularization, and the proportion of M2 macrophages of grafts were evaluated. The ability of extracellular vesicles to promote macrophage polarization and catecholamine secretion was detected. Whether the inducement of browning adipose differentiation is extracellular vesicles or the paracrine effect of M2 macrophages polarized by extracellular vesicles was also verified. Grafts treated by extracellular vesicles derived from adipose-derived stem cells showed enhanced beige adipose regeneration with increased neovascularization, M2 macrophage proportion, and norepinephrine secretion at postgraft week 4. Increased retention and decreased fibrosis and necrosis were noted at postgraft week 12. The extracellular vesicles uptake by macrophages promoted M2 type polarization and catecholamine secretion while suppressing M1 type polarization. Of note, browning adipose differentiation with enhanced energy expenditure could be promoted only by the conditioned medium from extracellular vesicle-polarized M2 macrophages but not by extracellular vesicles themselves. Supplementation with extracellular vesicles derived from adipose-derived stem cells increases fat graft survival and browning by which extracellular vesicles-polarized M2 macrophages secrete catecholamines to promote beige adipose regeneration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.