Abstract

BackgroundAlthough the efficacy of standard fish oil has been the subject of research in arthritis, the effect of krill oil in this disease has yet to be investigated. The objective of the present study was to evaluate a standardised preparation of krill oil and fish oil in an animal model for arthritis.MethodsCollagen-induced arthritis susceptible DBA/1 mice were provided ad libitum access to a control diet or diets supplemented with either krill oil or fish oil throughout the study. There were 14 mice in each of the 3 treatment groups. The level of EPA + DHA was 0.44 g/100 g in the krill oil diet and 0.47 g/100 g in the fish oil diet. Severity of arthritis was determined using a clinical scoring system. Arthritis joints were analysed by histopathology and graded. Serum samples were obtained at the end of the study and the levels of IL-1α, IL-1β, IL-7, IL-10, IL-12p70, IL-13, IL-15, IL-17 and TGF-β were determined by a Luminex™ assay system.ResultsConsumption of krill oil and supplemented diet significantly reduced the arthritis scores and hind paw swelling when compared to a control diet not supplemented with EPA and DHA. However, the arthritis score during the late phase of the study was only significantly reduced after krill oil administration. Furthermore, mice fed the krill oil diet demonstrated lower infiltration of inflammatory cells into the joint and synovial layer hyperplasia, when compared to control. Inclusion of fish oil and krill oil in the diets led to a significant reduction in hyperplasia and total histology score. Krill oil did not modulate the levels of serum cytokines whereas consumption of fish oil increased the levels of IL-1α and IL-13.ConclusionsThe study suggests that krill oil may be a useful intervention strategy against the clinical and histopathological signs of inflammatory arthritis.

Highlights

  • The efficacy of standard fish oil has been the subject of research in arthritis, the effect of krill oil in this disease has yet to be investigated

  • The most commonly used non-clinical model of arthritis is Collagen-Induced Arthritis (CIA) and was first reported by Trentham and colleagues where they induced the disease in rats following a single intradermal injection of type II collagen emulsified in Complete Freund's adjuvant (CFA) [6]

  • Rats and palatability study Two groups of 2 month old male Wistar rats (n = 5), initial weight 245 to 254 g, were kept in metabolic cages and fed either a control diet supplemented with rapeseed oil (2.5 g/100 g of diet) or a test diet supplemented with an equal amount of krill oil (SuperbaTM Krill Oil, Aker BioMarine ASA, Oslo, Norway)

Read more

Summary

Introduction

The efficacy of standard fish oil has been the subject of research in arthritis, the effect of krill oil in this disease has yet to be investigated. Osteoarthritis, known as osteoarthrosis or degenerative joint disease, is the most common type of arthritis, characterised primarily by cartilage loss and synovitis as a result of the aging process and affects approximately 12.1% of the US population aged 25 years or older [1,2]. The pathologic feature of RA is an autoimmune disorder characterized by the presence of Rheumatoid factor and anti-citrullinated protein antibodies. The most commonly used non-clinical model of arthritis is Collagen-Induced Arthritis (CIA) and was first reported by Trentham and colleagues where they induced the disease in rats following a single intradermal injection of type II collagen emulsified in Complete Freund's adjuvant (CFA) [6]. Similar to RA, the pathogenesis of CIA is a multistep process driven by major histocompatibility complex restricted T cells that mediate destruction of the joint characterized by fibrin deposition, synovial inflammation, periosteal bone formation, pannus formation and ankylosis of one or more articular joints [6,8]

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.