Abstract
Enzyme supplementation with a β-mannanase to degrade β-mannan fibers present in the diet has been shown to restore and improve performance in swine. The current study was conducted on a farm which had historical episodes of post-weaning diarrhea. In total, 896 newly weaned piglets were enrolled in two consecutive trials. Each trial consisted of 32 pens of 14 piglets housed in one large post-weaning compartment. Piglets at the same feeder were randomly assigned to the two treatment groups. The study compared the performance of post-weaned piglets fed either a commercial 3-phase nursery diet (Control) or an adapted diet supplemented with a β-mannanase (Hemicell HT; Elanco) (Enzyme), with some of the more expensive proteins replaced by soy bean meal in phase 1 and 2, and net energy (NE) content reduced by 65 kcal/kg in phase 3. All data analyses were performed using R version 3.6.3 (R Core Team, 2020). All tests were performed at the 5% level of significance. When multiple testing was involved, the nominal 5% Familywise Error Rate (FWER) was used. The study showed similar performance on the alternative diet with β-mannanase and the common commercial diets (P > 0.05). However, the Enzyme treated group had a significantly better general clinical score. Moreover, the number of individual treatments was a factor exp(0.69441) or 2 (CI 95% [1.46; 2.74]) higher (P < 0.001) in the Control group as compared to the Enzyme treated group. The number of treated animals was a factor exp(0.62861) or 1.87 (CI 95% [1.43; 2.53]) higher (P < 0.001) and the number of pigs with a repeated treatment was a factor exp(0.9293) or 2.53 (CI 95% [1.26; 5.09]) higher (P = 0.009) in the Control group as compared to the Enzyme treated group. In total, 7 (1.56%) piglets died in the Control group, whereas only 2 (0.45%) piglets died in the Enzyme treated group. The hazard ratio for mortality in the Control group relative to the Enzyme treated group was and estimated as 1.74 (CI 95% [0.51; 5.96]). Thus, the Control group had a non-significantly (P = 0.375) increased mortality. In conclusion, the results suggest that the use of an exogenous heat-tolerant β-mannanase allowed reduced levels of expensive protein sources to be used in the first two diets fed post-weaning, and 65 kcal/kg lower net energy content to be used in the third diet without adverse effects on intestinal health or overall performance. In fact, the occurrence of PWD and number of individual treatments during the post-weaning period were significantly reduced on the β-mannanase supplemented diets.
Highlights
Piglet post-weaning diets are by far the most expensive diets in the swine industry, mainly due to the need to include highly digestible feed ingredients to reduce postweaning diarrhea (PWD) and to optimize growth performance
soybean meal (SBM) contains 17 to 27% non-starch polysaccharides (NSP), which are indigestible for monogastric animals [2], together with several antinutritive factors, such as trypsin inhibitors, antigenic factors, and phytate [1]. β-Mannan is another antinutritive factor found in SBM and many other common feed ingredients [3], which has received increasing attention in recent years. β-Mannans are linear polysaccharides composed of repeating units of β-1,4-mannose and α-1,6-galactose and/or glucose units attached to the β-mannan backbone [4, 5]
Β-mannans from feed can create a false signal about the presence of pathogens in the gut, that elicits an unwarranted immune activation [8, 9], which is known as a feed-induced immune response (FIIR [10];)
Summary
Piglet post-weaning diets are by far the most expensive diets in the swine industry, mainly due to the need to include highly digestible feed ingredients to reduce postweaning diarrhea (PWD) and to optimize growth performance. Soybean meals’ widespread use is motivated by its high content of digestible protein, good amino acid balance and relatively low cost It would be economically advantageous, if some of the expensive protein sources that are generally considered necessary in diets for newly weaned piglets could be substituted with SBM. Β-Mannans are linear polysaccharides composed of repeating units of β-1,4-mannose and α-1,6-galactose and/or glucose units attached to the β-mannan backbone [4, 5] They are considered unsuitable for young piglets due to their antinutritive properties, mainly due to the stimulation of the innate immune response. Binding of PAMP to pathogen recognition receptors (PRR) present on innate immune cells, result in the release of innate defense molecules such as reactive oxygen and nitrogen species, bacteriolytic enzymes, antimicrobial peptides and complement proteins [7] These PAMP include complex polysaccharides such as β-mannan [6].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.