Abstract
Halide perovskite materials possess excellent optoelectronic properties and have shown great potential for direct X-ray detection. Perovskite wafers are particularly attractive among various detection structures due to their scalability and ease of preparation, making them the most promising candidates for X-ray detection and array imaging applications. However, device instability and current drift caused by ionic migration are persistent challenges for perovskite detectors, especially in polycrystalline wafers with numerous grain boundaries. In this study, we examined the potential of one-dimensional (1D) δ-phase (yellow phase) formamidinium lead iodide (δ-FAPbI3) as an X-ray detection material. This material possesses a suitable band gap of 2.43 eV, which makes it highly promising for X-ray detection and imaging using compact wafers. Moreover, we found that δ-FAPbI3 has low ionic migration, low Young's modulus, and excellent long-term stability, making it an ideal candidate for high-performance X-ray detection. Notably, the yellow phase perovskite derivative exhibits exceptional long-term atmospheric stability (RH of ≈70 ± 5%) over six months, as well as an extremely low dark current drift (3.43 × 10-4 pA cm-1 s-1 V-1), which is comparable to that of single-crystal devices. An X-ray imager with a large-size δ-FAPbI3 wafer integrated on a thin film transistor (TFT) backplane was further fabricated. Direct 2D multipixel radiographic imaging was successfully performed, demonstrating the feasibility of δ-FAPbI3 wafer detectors for sensitive and ultrastable imaging applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.