Abstract
Co-training under the Conditional Independence Assumption is among the models which demonstrate how radically the need for labeled data can be reduced if a huge amount of unlabeled data is available. In this paper, we explore how much credit for this saving must be assigned solely to the extra assumptions underlying the Co-training Model. To this end, we compute general (almost tight) upper and lower bounds on the sample size needed to achieve the success criterion of PAC-learning in the realizable case within the model of Co-training under the Conditional Independence Assumption in a purely supervised setting. The upper bounds lie significantly below the lower bounds for PAC-learning without Co-training. Thus, Co-training saves labeled data even when not combined with unlabeled data. On the other hand, the saving is much less radical than the known savings in the semi-supervised setting.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.