Abstract
Supersymmetric domain-wall spacetimes that lift to Ricci-flat solutions of M-theory admit generalized Heisenberg (2-step nilpotent) isometry groups. These metrics may be obtained from known cohomogeneity one metrics of special holonomy by taking a “Heisenberg limit”, based on an Inönü–Wigner contraction of the isometry group. Associated with each such metric is an Einstein metric with negative cosmological constant on a solvable group manifold. We discuss the relevance of our metrics to the resolution of singularities in domain-wall spacetimes and some applications to holography. The extremely simple forms of the explicit metrics suggest that they will be useful for many other applications. We also give new but incomplete inhomogeneous metrics of holonomy SU(3), G 2 and Spin(7), which are T 1, T 2 and T 3 bundles respectively over hyper-Kähler four-manifolds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.