Abstract
The spatial variation of the superstructure developed along and across the flow direction of injection-molded nylon 6 and its nanocomposites are presented using transmission polarized optical photomicrographs and micro-small-angle laser light scattering (SALS). At low mold temperature, 50 °C, the structure of unfilled nylon 6 is made up of steep structural gradient containing oriented threads at the surface surrounding undeformed spherulites in the interior. In nanocomposite samples, on the other hand, the development of complete spherulites is interrupted by high nucleation density caused by the presence of nanoparticles and shear amplification that occurs in small spaces between these particles. The latter phenomenon was found to be prevalent even at high mold temperatures where the cooling rates are greatly suppressed. In the structure gradient, polymer/nanocomposite samples show double shear regions near the surface surrounding the core regions that contain sheaves. The origin of complex superimposed SALS patterns is explained in terms of the short and long-range spatial correlations of these preferentially oriented sheaves and their optic axes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.