Abstract
In this paper we continue the program pioneered by D’Hoker and Phong, and recently advanced by Cacciatori, Dalla Piazza, and van Geemen, of finding the chiral superstring measure by constructing modular forms satisfying certain factorization constraints. We give new expressions for their proposed ansätze in genera 2 and 3, respectively, which admit a straightforward generalization. We then propose an ansatz in genus 4 and verify that it satisfies the factorization constraints and gives a vanishing cosmological constant. We further conjecture a possible formula for the superstring amplitudes in any genus, subject to the condition that certain modular forms admit holomorphic roots.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.