Abstract

The compressible Rayleigh–Taylor instability of a supersonic accelerated contact discontinuity between two gases is studied by numerically solving the two-dimensional Euler equations. The computed solutions exhibit a complicated set of nonlinear waves comprised of spike and bubble bow shocks, terminal shocks within the spike and bubble, Kelvin–Helmholtz rollup of the spike tip, and contact surface waves. The spike appears to attain a finite growth of aspect ratio approximately equal to 2. The propagation of a supersonic slab jet is also studied numerically, in order to compare and contrast the jet wave structure with that of the supersonic accelerated surface.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.