Abstract

An experimental investigation was conducted on a supersonic flow at a freestream Mach number of 2 over a shallow open cavity, including the effects of adding streamwise serrated edges. These flows have relevance to weapons bays and airframe gaps on high-speed aircraft. The measurements consisted of single-shot and time-resolved schlieren visualization, as well as unsteady pressure spectra. The length-to-depth ratio of the cavity was 8. The tests conducted at different Reynolds numbers with the baseline cavity (straight leading and trailing edges) showed that increasing the Reynolds number increases the root-mean-square pressure inside the cavity. The addition of serrations to the cavity leading or trailing edge did not show any significant effect on the separating shear layer nor in controlling the oscillations of the shear layer. There was also no noticeable effect on the overall sound pressure levels inside the cavity. A new expression for calculating shallow-cavity resonant frequencies applicable at supersonic Mach numbers is proposed. It is shown that it compares well with experiments and the well-known modified Rossiter relation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.