Abstract
We study the superradiant instability in scalar-tensor theories of gravitation, where matter outside a black hole provides an effective mass to the scalar degree of freedom of the gravitational sector. We discuss this effect for arbitrarily spinning black holes and for realistic models of truncated thin and thick accretion disks (where the perturbation equations are nonseparable), paying particular attention to the role of hot coronal flows in the vicinity of the black hole. The system qualitatively resembles the phenomenology of plasma-driven superradiant instabilities in general relativity. Nevertheless, we show that the obstacles hampering the efficiency of plasma-driven superradiant instabilities in general relativity can be circumvented in scalar-tensor theories. We find a wide range of parameter space where superradiant instabilities can be triggered in realistic scenarios, and discuss the constraints on scalar-tensor theories imposed by this effect. In particular, we argue that the existence of highly spinning accreting black holes is in tension with some scalar-tensor alternatives to the dark energy, e.g., symmetron models with screening.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.