Abstract

We study fermions that are gauge coupled to a cavity mode via Raman-assisted hopping in a one-dimensional lattice. For an infinite lattice, we find a superradiant phase with an infinitesimal pumping threshold which induces a directed particle flow. We explore the fate of this flow in a finite lattice with boundaries, studying the nonequilibrium dynamics including fluctuation effects. The short-time dynamics is dominated by superradiance, while the long-time behavior is governed by cavity fluctuations. We show that the steady state in the finite lattice is not unique and can be understood in terms of coherent bosonic excitations above a Fermi surface in real space.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.