Abstract

Superradiance and subradiance are collective effects that emerge from coherent interactions between quantum emitters. Due to their many-body nature, theoretical studies of extended samples with length larger than the atomic transition wavelength are usually restricted to their early time behavior or to the few-excitation limit. We use herein a mean-field approach to reduce the complex many-body system to an effective two-atom master equation that includes all correlations up to second order and that can be numerically propagated in time. We find that three-dimensional and two-dimensional inverted atomic arrays sustain superradiance below a critical lattice spacing and quantify the scaling of the superradiant peak for both dimensionalities. Finally, we study the late-time dynamics of the system and demonstrate that a subradiant phase appears before the system finally relaxes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.