Abstract

With the rapid technological development of various satellite sensors, high-resolution remotely sensed imagery has been an important source of data for change detection in land cover transition. However, it is still a challenging problem to effectively exploit the available spectral information to highlight changes. In this paper, we present a novel change detection framework for high-resolution remote sensing images, which incorporates superpixel-based change feature extraction and hierarchical difference representation learning by neural networks. First, highly homogenous and compact image superpixels are generated using superpixel segmentation, which makes these image blocks adhere well to image boundaries. Second, the change features are extracted to represent the difference information using spectrum, texture, and spatial features between the corresponding superpixels. Third, motivated by the fact that deep neural network has the ability to learn from data sets that have few labeled data, we use it to learn the semantic difference between the changed and unchanged pixels. The labeled data can be selected from the bitemporal multispectral images via a preclassification map generated in advance. And then, a neural network is built to learn the difference and classify the uncertain samples into changed or unchanged ones. Finally, a robust and high-contrast change detection result can be obtained from the network. The experimental results on the real data sets demonstrate its effectiveness, feasibility, and superiority of the proposed technique.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.