Abstract

Superparamagnetic ascorbic acid-coated Fe3O4 nanoparticles with a high specific surface area were successfully synthesized via an environmentally friendly hydrothermal route in the absence of any templates. The as-synthesized ascorbic acid-coated Fe3O4 nanoparticles have a diameter of less than 10nm, thus leading to a high specific surface area of about 179m2/g, which is even larger than those of well-defined mesoporous structures. The only used capped agent is ascorbic acid, which serves as a functionalized molecule to make sure the high dispersibility and stability of the ascorbic acid-coated Fe3O4 nanoparticles in aqueous solution. The ascorbic acid-coated Fe3O4 nanoparticles exhibit superparamagnetic properties at room temperature and saturation magnetization approaches 40emug−1. The ascorbic acid-coated Fe3O4 nanoparticles were evaluated as an absorbent to remove heavy metal arsenic from wastewater. The adsorption data obeyed the Langmuir equation with a maximum adsorption capacity of 16.56mg/g for arsenic (V), and 46.06mg/g for arsenic (III).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.