Abstract

Abstract Superoxide dismutases (SODs) are metal-containing enzymes that catalyze the dismutation of superoxide radicals to oxygen and hydrogen peroxide. The enzyme has been found in all aerobic organisms examined where it plays a major role in the defense against toxic-reduced oxygen species, which are generated as byproducts of many biological oxidations. The generation of oxygen radicals can be further exacerbated during environmental adversity and consequently SOD has been proposed to be important for plant stress tolerance. In plants, three forms of the enzyme exist, as classified by their active site metal ion: copper/zinc, manganese, and iron forms. The distribution of these enzymes has been studied both at the subcellular level and at the phylogenic level. It is only in plants that all three different types of SOD coexist. Their occurrence in the different subcellular compartments of plant cells allows a study of their molecular evolution and the possibility of understanding why three functionally ...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.