Abstract
1. Mitochondrial mechanisms involved in veratridine-induced chromaffin cell death have been explored. 2. Exposure to veratridine (30 micro M, 1 h) produces cytochrome c release to the cytoplasm that seems to be mediated by superoxide anions and that is blocked by cyclosporin A (10 micro M), MnTBAP (10 nM), catalase (100 IU ml(-1)) and vitamin E (50 micro M). 3. Following veratridine treatment, there is an increase in caspase-like activity, blocked by vitamin E (50 micro M) and the mitochondrial permeability transition pore blocker cyclosporin A (10 micro M). 4. Superoxide anions open the mitochondrial permeability transition pore in isolated mitochondria, an effect that is blocked by vitamin E (50 micro M) and cyclosporin A (10 micro M), but not by the Ca2+ uniporter blocker ruthenium red (5 micro M). 5. These results strongly suggest that under the stress situation caused by veratridine, superoxide anions become important regulators of mitochondrial function in chromaffin cells. 6. Exposure of isolated bovine chromaffin mitochondria to Ca2+ results in mitochondrial swelling. This effect was prevented by ruthenium red (5 micro M) and cyclosporin A (10 micro M), while it was not modified by vitamin E (50 micro M). 7. Veratridine (30 micro M, 1 h) markedly decreased total glutathione and GSH content in bovine chromaffin cells. 8. In conclusion, superoxide anions seem to mediate veratridine-induced cytochrome c release, decrease in total glutathione, caspase activation and cell death in bovine chromaffin cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.