Abstract

By virtue of the well-known theorem, a structure Lie group K of a principal bundle P → X is reducible to its closed subgroup H iff there exists a global section of the quotient bundle P/K → X. In gauge theory, such sections are treated as Higgs fields, exemplified by pseudo-Riemannian metrics on a base manifold X. Under some conditions, this theorem is extended to principal superbundles in the category of G-supermanifolds. Given a G-supermanifold M and a graded frame superbundle over M with a structure general linear supergroup, a reduction of this structure supergroup to an orthogonal-symplectic supersubgroup is associated to a supermetric on a G-supermanifold M.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.