Abstract
Periodic metal nanoparticle (NP) arrays support narrow lattice plasmon resonances that can be tuned by changing the localized surface plasmons of the individual NPs in the array, NP periodicity, and dielectric environment. In this paper, we report superlattice plasmons that can be supported by hierarchical Au NP arrays, where finite arrays of NPs (patches) are organized into arrays with larger periodicities. We show that superlattice plasmons can be described by the coupling of single-patch lattice plasmons and Bragg modes defined by the patch periodicity. Superlattice plasmon resonances are often significantly narrower than that of single-patch lattice plasmon resonances and exhibit stronger local peak fields. By varying the periodicity of the patches, we demonstrated that the number and spectral location of superlattice plasmon resonances can be tailored in hierarchical Au NP arrays. These narrow superlattice plasmon resonances open prospects in ultrasensitive sensing and energy transfer and plasmon amp...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.