Abstract

ABSTRACT Fe3+-, Cr3+-, Cu2+-, Mn2+-, Co2+-, and Ni2+-exchanged Al2O3-pillared interlayer clay (PILC) or TiO2-PILC catalysts are investigated for the selective catalytic reduction (SCR) of nitric oxide by ammonia in the presence of excess oxygen. Fe3+-exchanged pillared clay is found to be the most active. The catalytic activity of Fe-TiO2-PILC could be further improved by the addition of a small amount of cerium ions or cerium oxide. H2O and SO2 increase both the activity and the product selectivity to N2. The maximum activity on the Ce-Fe-TiO2-PILC is more than 3 times as active as that on a vanadium catalyst. Moreover, compared to the V2O5-WO3/TiO2 catalyst, the Fe-TiO2-PILC catalysts show higher N2/N2O product selectivities and substantially lower activities (by ~85%) for SO2 oxidation to SO3 under the same reaction conditions. A 100-hr run in the presence of H2O and SO2 for the CeO2/Fe-TiO2-PILC catalyst showed no decrease in activity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.